44 research outputs found

    Deep Self-Taught Learning for Weakly Supervised Object Localization

    Full text link
    Most existing weakly supervised localization (WSL) approaches learn detectors by finding positive bounding boxes based on features learned with image-level supervision. However, those features do not contain spatial location related information and usually provide poor-quality positive samples for training a detector. To overcome this issue, we propose a deep self-taught learning approach, which makes the detector learn the object-level features reliable for acquiring tight positive samples and afterwards re-train itself based on them. Consequently, the detector progressively improves its detection ability and localizes more informative positive samples. To implement such self-taught learning, we propose a seed sample acquisition method via image-to-object transferring and dense subgraph discovery to find reliable positive samples for initializing the detector. An online supportive sample harvesting scheme is further proposed to dynamically select the most confident tight positive samples and train the detector in a mutual boosting way. To prevent the detector from being trapped in poor optima due to overfitting, we propose a new relative improvement of predicted CNN scores for guiding the self-taught learning process. Extensive experiments on PASCAL 2007 and 2012 show that our approach outperforms the state-of-the-arts, strongly validating its effectiveness.Comment: Accepted as spotlight paper by CVPR 201

    SCALE-ROBUST DEEP LEARNING FOR VISUAL RECOGNITION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Reversible Recursive Instance-level Object Segmentation

    Full text link
    In this work, we propose a novel Reversible Recursive Instance-level Object Segmentation (R2-IOS) framework to address the challenging instance-level object segmentation task. R2-IOS consists of a reversible proposal refinement sub-network that predicts bounding box offsets for refining the object proposal locations, and an instance-level segmentation sub-network that generates the foreground mask of the dominant object instance in each proposal. By being recursive, R2-IOS iteratively optimizes the two sub-networks during joint training, in which the refined object proposals and improved segmentation predictions are alternately fed into each other to progressively increase the network capabilities. By being reversible, the proposal refinement sub-network adaptively determines an optimal number of refinement iterations required for each proposal during both training and testing. Furthermore, to handle multiple overlapped instances within a proposal, an instance-aware denoising autoencoder is introduced into the segmentation sub-network to distinguish the dominant object from other distracting instances. Extensive experiments on the challenging PASCAL VOC 2012 benchmark well demonstrate the superiority of R2-IOS over other state-of-the-art methods. In particular, the APr\text{AP}^r over 2020 classes at 0.50.5 IoU achieves 66.7%66.7\%, which significantly outperforms the results of 58.7%58.7\% by PFN~\cite{PFN} and 46.3%46.3\% by~\cite{liu2015multi}.Comment: 9 page
    corecore